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ABSTRACT:

The role of individual neurons in neural plasticity is affected by both its

| TRANSPORT & AXON MTs = BARCODED COMPLEXITY

NEURAL CODE AND SYNAPTIC PLASTICITY
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underlying c'om‘parlmentallzed infrastructure of axons ‘and dendrites as well as Staggered Axonal MT Packing & MT Junctions Presyl{aptlc
by communication between neurons and neural regulating cells. We present two Region Synapse
models to address plasticity from alternate perspectives. Mathematically neuron a. MT junctions — degrees of overlap b. Axon cross-section o
axon structure has largely been ignored in terms of its nano to microscale Hirokawa et al., 1984 Sutanine
components that impact macroscale outcomes. The first model demonstrates
the ability of integrated roles of the axonal microtubule network and trafficking &
to internally define a neuronal ‘barcode’. This model establishes a mechanism <
by which individual neurons of a given type have expanded diversity and &
opportunity for functional plasticity. We apply a totally asymmetric simple
exclusion process (TASEP) and Langmuir kinetics combined modified model to
track equilibrium and non-equilibrium dynamics of kinesin motors on the
staggered infrastructure of the axonal microtubule network and partial
differential equations for the motor density profile. The second model presents a
neural network simulation for the transfer of impulses between the post- Pns!syr_mptm
synaptic and pre-synaptic compartments for digital implementation. For calcium Hickawa oo 1984 Region
dynamics we consider the lipophilic retrograd signaling model. The hebbian
learning rule for synaptic plasticity is used including the antisymmetry Tsodyks .A”gg:“emer LIPID-DERIVED RETROGRADE SIGNALING MODEL
and Markram proposed form where the time interval of potentiation and * Branch?
depression are comparably similar. The model reproduces relevant biological '
behaviors with appropriate feedback control. The system architectures and o PRESYNAPTIC SITE POSTSYNAPTIC SITE
simulation outcomes are presented for both models. . ‘ -
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